

Industrial Steam Vapor Recompression Heatpump

Paul Straatman, Indorama Ventures

heat to power with carnot efficiency of 13 % (work / heat)

Turbine expansion and steam bottoming

			steam work	latent waste heat	
point		Н	dH 1-2	dH 2-3	
	1	2800	300	2300	
	2	2500			
	3	200	efficciency	heat to work	
			0.13043478		

- Work is read by differences in enthalpies of the points 1 to 2
- Condensation heat is represented by 2-3.
- Efficiency from heat to work is about 13%. At power plants the start temperatures are much higher, therefore better efficiencies

Mechanical steam compression

MVR: Heat/work = COP

Heat of vaporization is 1-2. Vertical steps up are the compression work and diagonal down are the condensate injection cooling heat. COP for heatpump is heat / work

point	Н	heat by steamgenerator			
1	400		evap 1	dH 1-2	2250
2	2650		work by compressor		
3	2800		stage 1	dH 2-3	150.00
4	2700		stage 2	dH 4-5	100
5	2800		stage 3	dH 6-7	110
6	2700		stage 4	dH 8-9	130
7	2810		stage 5	dH 10-11	140
8	2710				630.00
9	2840		heat by condensate injection		
10	2750		stage 1	dH 3-4	150
11	2890		stage 2	dH 5-6	100
12	2800		stage 3	dH 7-8	100
			stage 4	dH 9-10	90
			stage 5	dH 11-12	90
					530
			total heat delivered		
				2780	
			total work delivered		
				630.00	
			efficciency 1.5-15 bar (COP)		
				4.412698	

Implementation of MVR heatpump: 60 % reduction of natural gas CO2

total CO2 emissions

Effect of heatpump before and after

Steam compressor (with permission from Atlas Copco)

Success factors

- Inlet temperature and pressure of waste heat. The higher the less work for compressor.
- Amount of waste heat. Better economies of scale above 50 ton steam per h.
- Desired end pressure of steam. Reduce the amount of steam to be delivered to the highest grid pressure. Rather distribute it over the different pressure levels in your steam grid to maximize overall COP.
- Interstage cooling by condensate injection creates extra steam from non-isentropic losses in compressor
- Open cycle has one less heatexchanger than closed heatpump cycle. Reduces Capex and better efficiency because of no transfer losses.